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Solvable aggregation model with monomer annihilation
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We propose a simple model in which irreversible aggregations occur between any two clusters of the same
species and monomer annihilations occur between any two clusters of different species. We investigate the
mean-field rate equation to analyze kinetics of the system under symmetrical initial conditions. In the constant-
reaction-rate case, the cluster-mass distribution of either species approaches a conventional scaling form and
both species survive finally; while for the system with a fast rate kernel, both species scale according to a
modified form and no species can survive at the end.
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The kinetics of irreversible aggregation and annihilation Ai+A—ALj, Bi+B—B.;, (1)
processes is an important subject of extensive research in the
recent few decadell—4]. In a general aggregation model and a monomer annihilation between different species reads
with annihilation, the system consists of at least two distinct
species, and an irreversible aggregation occurs between any

mot_clusters of the s;tame Sp?C'ESt\Vzh”e an |rrtevers||bliz annkqpq two-species case also contains the generic multispecies
iation occurs simuftaneously between any two CIUSIETS Ohapayior, Therefore, we can first focus on the two-species

different species. Recently, considerable works have been dgzase and then generalize it to the multispecies situation. We
voted to understanding the evolution of the cluster-mass dissyydy our model in the mean-field limit. The mean-field ap-
tribution in the irreversible aggregation-annihilation processproximation neglects the spatial fluctuation of the reactant
and it was found that the evolution behavior of the clustergensities and, therefore, applies to the case in which the spa-
mass distribution may obey a scaling law in the long-timetja| dimensiond of the system is greater than or equal to a
limit [5-10]. critical dimensiord,, [6,9]. It was found that for pure aggre-
For the annihilation reaction, most of these works havegation processesi.=2 [11]. Sokolov and Blumen verified
focused on two types of schemes, partial annihilation andhat for irreversible aggregation processes with partial anni-
complete annihilation. The former is described by thehilation the marginal dimension is [8], and Ben-Naim and
scheme Aj+B;—A_; (i=]) or A+B;j—Bj_; (i<j) Krapivsky also found that for irreversible aggregation system
[6-8]. Here,A; denotes an aggregate Afspecies consisting with complete annihilation the critical dimension dg=2
of sizei andB; represents a cluster 8fspecies consisting of [9]. Since our model interpolates between the pure aggrega-
size j, and after the annihilation reaction, the cluster withtion and the general aggregation-annihilation processes, it is
larger size is conserved with the monomer differeficej| natural to expect that for our model the critical dimension is
of the reactants. The latter is a pairwise annihilation of thehe samed.=2. _ _ .
aggregates according to the schefe-B;—inert, that is, We f'r5t investigate the two-species  aggregation-
the binary annihilation between any two clusters of differen@nihilation process. The concentrationsAoéndB clusters
species always yields the inert product, independent of th§ONSisting ofk mers are denoted by andb, respectively.
reactant massd®,10]. On the other hand, all the results of Here we consider a simple model with a constant reaction

the investigations on these aggregation processes with partird'ﬂte kernel. All the annihilation reaction rates are equal to a

or complete annihilation imply that at most one species Caﬁonstant‘], and the aggregation rates &f and B clusters

survive at the end. In particular, all the species will annihilateffhqual the constemtbtl tﬂnd I2, tr_espectwel;(/j. Thitihmea?—ﬁeld
each other completely under the symmetrical initial condi-t. eorlytasﬂs]umes at t('e reacfl?rrll procete ?[WITha r?he propor-
tions. In most situations of the natural science and technolzon&! 10 the concentrations ot the reactants. Then the mean-

ogy, it may be reasonable to assume the above-mentioné@ld rate equations for this two-species system read
schemes for the annihilation process. However, there alsodak 1 o o
exist many situations in which both reactant clusters can sur-—~ _| 1(_ DR 3, ~a.>, aj> ~J(ay—agr1) > by,
vive together after the annihilation. The classical example is dt 2 i {T=k =1 =1
that an animal species can coexist with its natural enemies in
the natural world. db, 1 - -

In order to study the general mechanisms, we introduce a—g; =!2| 5 E:k bib; _bkzl b; _J(bk_bk+1)21 a;.
“monomer annihilation” model as an attempt to account for '+' ) ) 3
the coexisting phenomena. In our model, irreversible aggre-
gations occur between any two clusters of the same species, we consider the simplest but important case with the

monodisperse initial conditions

Ai+Bj_>Ai*l+Bj*l' (2)

[

*Electronic address: kejianhong@yahoo.com.cn a(0)=~Agd1, b(0)=Bgdy;. (4)
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The governing rate equatioi3) can then be solved with the Thus, we can conclude that either—<« or da/dt—0 att

help of ansat%6]

ah)=AM[at)] ! b(t)=BM[bH]* (5

Substituting Egs(5) into Egs.(3), we can transform the rate

equationg3) into the differential equations as follows:

da I, dA 1,A? 1-a
_:_A1 . - - B H
dt 2 dt 1-a 1-b
do I, dB  1,B? 1-b 6
dt- 2% G- 1-p B ©

Introducing two variables,a(t)=[1—a(t)]"! and B(t)
=[1—Db(t)]" %, we recast Eqg6) to

d’a 2) dadB d’8 2] dadp .
G B dt dt’ g Lapdt a7
with the initial conditions
o da_l dﬁ_l _
a—,B—l, a—zlle, a—ilzBo at t=0.
8

It is obvious that for our model the mass difference between

the two species is conserved,

Ma(t)— MB<t>=k§1 k[ay(t) —by(t)]

2 da 2 d,B_A B g
S dt 1, dr o Bo 9
From Eq.(9), one can obtain
1P
|2C!_|1B:T(A0_Bo)t+|2_|1. (10)

Under the symmetrical initial conditiomdy,=B,, we find
l,a—1,8=1,—1,. Equationg(7) then reduce to

da Il Il 2J/(1,—14) |2_|1 - —2J/(1,—1q)
—= A2 1- ot
dt 27001, R
for I,#1,,
da 1, (20 20 "
E_E 0€X |1_0( E or 11=15. ( )

From Egs.(11), we cannot derive the exact solution @ft)

—oo, Further, from Eqgs(11), we know that for this case
—oo att—oo, Hence,a>1 att>1. In the long-time limit,
Egs.(11) can be asymptotically rewritten as

——=Cy, (13

Whel‘e C1: (I 1A0/2)(| 1“ 2)2‘]/('27'1) fOI’ | 1§t | 2 a.nd Cl
=(11Aq/2)exp(2J/1,) for 1,=1,. Equation(13) can be di-
rectly solved to yield the asymptotic solution @{t) at large
time,

a(t)=Ct. (14

From Egs. (100 and (14), one can then determine the
asymptotic solution of3(t) at large times

whereC,=1,C;/1;. Thus, we obtain the asymptotic solu-
tions of the cluster-mass distributions

2 ke
ak(t):Et‘z(l—Cl -1yk=1,

2
by(t)= Et’z(l—cz’lt’l)k’l. (16)

Further, Eqs(16) can be rewritten as

~ 2 -2 b ~ 2 -2
ak(t)—mt exp(—Xx), k(t)_Et exp(—y),
17)

which are valid in the scaling regiok>1, t>1, X
=(k/Cy)t~t=finite, andy=(k/C,)t '=finite. These ex-
hibit that the cluster-mass distribution of either species ap-
proaches a conventional scaling fof6l

Cr(t) =t 2d[Kk/S(1)], S(t)et, (18

wherec,(t) denotes the concentration of ttkemer aggre-
gates and5(t) is the characteristic mass for such an irrevers-
ible aggregation system. In this model, the scaling function is
exponential, ®(x) =exp(—x). Moreover, the typical mass
S(t) of either species grows ds It is also instructive to
compute the total concentration and the total mass of the
aggregates. In the long-time limit, we obtain the total con-
centrations

©

and then turn to determine its asymptotic solution at large B 2 B . 2
times. The system is assumed to reach its steady stdte at NA(t)_gl ak(t)_it ’ NB(t)_gl bk(t)_gt ’

—oo and the corresponding steady conditions are given as (19
follows:
and the total mass densities
da 1 da dA 2 d%a 4 (da)z }
dt o2 dt 7 dt e?det el Ot MAD=Mg(O =3, ka)=>". (20
(12) k=1 I
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These indicate that the total concentration of either speciementioned technique, we solve E(R1) and obtain the

decays ag ! and the total mass of either species retains asymptotic scaling solution afi(t) as follows:

certain value at>1. The results also imply that for the

symmetrical initial case, both species are conserved by the

dynamics of this irreversible aggregation-annihilation pro-

cess, which is quite different from the results for the conven-

tional aggregation-annihilation proces$ésr,9,10. whereC,=(1/2)exd —2(n—21)J/1]. This implies that for the
For the asymmetrical initial casé\,>B,, it is difficult ~ symmetrical initial case, the evolution of each species obeys

for us to derive the explicit solutions of the cluster-massthe conventional scaling layd8). Moreover, all species can

distributions. However, we can draw several important conbe conserved by the dynamics of the aggregation process

clusions on the basis of the results of the above-mentioneglith monomer annihilation, which is independent of the spe-

symmetrical initial case, which are confirmed by some nu-<ies numben as well as the ratio between the reaction rates

merical computations. From Ed9), we find thatda/dt J andl. On the other hand, the final surplus mass of each

=11(Ag—Bp)/2+(11/15)dB/dt=1,(A;—Bg)/2. Mean-  species is equal to a finite constant ex@(n—21)J/1] that

while, sinceda/dt=C, in the Aj=B, case att—x> [see depends on the species numbend on the ratio of reaction

Egs. (13)], we can conclude that for thé,>B, case rates.

da/dt>C, at large times. Hence, €,=1,(A;—Bg)/2, i.e., In order to go deep into the kinetics of the irreversible

Ao/Bo<[1—exp(=2J1)]"t for 1,=1, or A,/By<[1 aggregation with monomer annihilation, we then turn to dis-

—(1,/1,)20271077 for |,#1,, we find thatdB/dt=C,;  cuss a two-species model with a fast annihilation rate kernel.

>0 andda/dt=11(Ag—Bp)/2+C; in the long-time limit  In this system, the rate of the annihilation betwégrandB,;

(hereCj is a finite constant which are similar to Eq(13).  clusters is proportional to their masdeandj, with the pro-

Thus, we know that the cluster-mass distribution of eithemportionality coefficient). Then the rate equations read

species approaches the conventional scaling k8 and

both species can be conserved by the dynamics of the sys- day 1 -

tem. This result is confirmed by some numerical computa- a9t i3 sz:k aiaj—akal a;

tions. On the other hand, whely>B, (especially for the

case in which there exists only one monomeBdfpecies in *

the beginning of the procesB species will be annihilated —Jlkay— (k+1)ax 11>, jbj,

completely byA species and only clusters survive finally. =1

Thus, we know that for thé,>B, case, the mass distribu- db L "

tion of A clusters also satisfies the conventional scaling form k |2(§ | D bib, bk; bj)

C(t)= %t—zexp( -x), x=(kIC)t™Y, (22

(18), while the conventional scaling description breaks down dt
for B clusters.

It is obvious that for the asymmetrical initial case, there “
exists a critical ratioy, of Ay/Bgy which divides the two _‘][kbk_(k+1)bk+1];l laj. (23)
different evolution regimes. Whefy,/By< ., both species
SC"’“? according to the conventional scaling foft®) and  ypder the initial conditiong4), with the help of ansatz5)
survive together at the end; however, for thg/Bo>7: e recast Eqs(23) to
case, onlyA clusters can survive finally. Our results imply
that y.>[1—exp(—2J/1,)]"! for the I,=1, case andy, da I, Ja2B JaB

>[1—(1,/1,)2/0271D0]7L for the |,#1, case. Unfortu- a_EA

1=k

+ - 1
nately, we cannot determine the exact valueygf If the (1-b)*> (1-b)?
details of the reaction events are given, the critical ratio
may be asymptotically determined by numerical computa- dA 1,A> 2JaAB JAB
tion.
In the n-species (>2) case, we set all the aggregation

rates equal td and the annihilation rates Under the sym-

At 1-a (10?2 (1-b?

metrical monodisperse initial conditions, the governing rate db_ 1, N Jb?A ~ JbA
equation reads dt 2° (1-a)2 (1-a)?’
do_ (1 < C_C__Cic_ dB 1,82 2JbAB  JAB
dt 2i+j:k ij kj=1 j H:_l—b-i_ 5 5 (24)
(1-a) (1-a)
—(N—=1)J(Ck—Cr1) > ¢, (22) It should be pointed out that for this model the mass dif-
=1

ference between the two species is also conserved. For the
symmetrical initial case,A;=By=C,, we have Mj(t)
wherec,(t) denotes the concentration of thener clusters =Mg(t), i.e.,A/(1—a)?’=B/(1—b)?2. Thus, from Eqs(24)
of any species and,(0)=6,;. By employing the above- we obtain
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d[A/(1-a)?] d[B/(1-b)?] A2 Finally, we turn to the asymmetrical initial caséy
= =-J . (25 >B,. From Egs.(24), we obtain
dt dt (1—-a)*
d[A/(1-2a)®] d[B/(1-b)*] AB
Equation(25) can be directly solved to yield dt dt (1-a)*(1- b)Z(IZS)
A 5 c Since A/(1—a)?—B/(1—b)?=A,— By, it is obvious that
= = o (26) Ma(t)—Ay—Bg andMg(t)—0 att—oo. Thus, one can eas-
(1—a)? (1-b)? JICt+1 ily solve Eqs.(24) to obtain the asymptotic solutions

a(t)=Cqt 2exp(—X), X=Cjkt 1,
By making use of Eq(26) we solve Egs.(24) and then
obtain the asymptotic solutions @(t) andb,(t) at large by(t)=Criexd —I(Ao—Bo)kt], (29)

times, WhereC9:4/[|%(Ao_ Bo)], C10=2[11(Ag—Bg)], andCy;
=(Ap—Bg)Bg/Ap. The results show that the evolution be-
k havior of A clusters satisfies the conventional scaling law
) t lexp(—x), x=Cgkt™1, (18) while B clusters do not scale. For this case, the total
concentration ofA clusters decays as ! in the long-time
limit while that of B clusters decays rapidly as éxpJ(Ag
| k —Bg)t]. Moreover, onlyA clusters can survive at the end.
_2) tlexp—y), y=Cgkt™!, (27 In summary, we have proposed a simple irreversible ag-
l2+2J gregation model with monomer annihilation. Based on the
mean-field assumption, we analyzed the kinetics of the irre-
_ 2 _ versible aggregation-annihilation process with a constant-
where CS_‘;‘]/(IlJ“Z‘])  Ce=2/[(11+29)Col.  C7  tte kernel. The results indicate that for the symmetrical ini-
=43/(1,+23)%, and Cg=2/[(1;+2J)Co]. The results 5 case, the cluster-mass distribution of each species
show that the cluster-mass distribution of either species doegytisfies the conventional scaling form and all species can be
not approach the conventional definitigh8) but satisfies a  conserved by the dynamics of the aggregation-annihilation
modified scaling form c,(t)=h"t"'®[k/S(t)], S(t)<t.  system. However, for the two-species case in which the ini-
Here, h is a constant and €h<1. This modified scaling tial mass of one species is by far greater than that of another
form also indicates that the two different mass scales, ane, only the species with the larger initial concentration
growing scale and a time-independent scale, are associatedales according to the conventional scaling law and survives
with either species. The growing scale for either species iat the end. We have also investigated the two-species model
the same,S(t)~t, which is forced by the aggregation- with a fast annihilation rate kernel and found that its kinetic
annihilation process. The time-independent scaleAf@pe-  behavior is quite different from that of the constant-rate-
cies isSy=(l,+ 2J)/2J while that forB species isSg= (I, kernel model. Under the symmetrical initial conditions, the
+2J)/2J. Itis the time-independent scale that dominates theevolution behavior of either species obeys the modified scal-
evolution behavior of the species in the long-time limit. Ben-iNg law and both species annihilate each other completely at
Naim and Krapivsky also found that this nonuniversal phethe end. For the asymmetrical initial case, the evolution of
nomenon exists in the irreversible aggregation-annihilatiof"® héavy species with the larger initial concentration ap-
processef6,9]. In the long-time limit, the total concentration proaches the conventional scaling form while the. light spe-
and the total mass oA species ardN,(t)=2t~Y/(1,+2J) cies goeﬁ not scale. Hence, only the heavy species can sur-
and M(t)=t"/J, and those ofB species areNg(t) Vive finatly.

=2t7"/(1,+2J) and Mg(t)=t"%/J. These indicate that  This project was supported by the National Natural Sci-

both the total concentration and the total mass of either speence Foundation of China under Grant Nos. 10275048 and
cies decay as ! in the long-time limit. So, both species 10175008 and by the Zhejiang Provincial Natural Science
annihilate each other completely at the end. Foundation of China under Grant Nos. 199050 and 102067.
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