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Solvable aggregation model with monomer annihilation

Jianhong Ke* and Zhenquan Lin
Department of Physics, Wenzhou Normal College, Wenzhou 325027, China

~Received 20 November 2002; published 6 June 2003!

We propose a simple model in which irreversible aggregations occur between any two clusters of the same
species and monomer annihilations occur between any two clusters of different species. We investigate the
mean-field rate equation to analyze kinetics of the system under symmetrical initial conditions. In the constant-
reaction-rate case, the cluster-mass distribution of either species approaches a conventional scaling form and
both species survive finally; while for the system with a fast rate kernel, both species scale according to a
modified form and no species can survive at the end.
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The kinetics of irreversible aggregation and annihilati
processes is an important subject of extensive research i
recent few decades@1–4#. In a general aggregation mod
with annihilation, the system consists of at least two disti
species, and an irreversible aggregation occurs between
two clusters of the same species while an irreversible a
hilation occurs simultaneously between any two clusters
different species. Recently, considerable works have been
voted to understanding the evolution of the cluster-mass
tribution in the irreversible aggregation-annihilation proce
and it was found that the evolution behavior of the clust
mass distribution may obey a scaling law in the long-tim
limit @5–10#.

For the annihilation reaction, most of these works ha
focused on two types of schemes, partial annihilation a
complete annihilation. The former is described by t
scheme Ai1Bj→Ai 2 j ( i> j ) or Ai1Bj→Bj 2 i ( i , j )
@6–8#. Here,Ai denotes an aggregate ofA species consisting
of sizei andBj represents a cluster ofB species consisting o
size j, and after the annihilation reaction, the cluster w
larger size is conserved with the monomer differenceu i 2 j u
of the reactants. The latter is a pairwise annihilation of
aggregates according to the schemeAi1Bj→ inert, that is,
the binary annihilation between any two clusters of differe
species always yields the inert product, independent of
reactant masses@9,10#. On the other hand, all the results
the investigations on these aggregation processes with pa
or complete annihilation imply that at most one species
survive at the end. In particular, all the species will annihil
each other completely under the symmetrical initial con
tions. In most situations of the natural science and tech
ogy, it may be reasonable to assume the above-mentio
schemes for the annihilation process. However, there
exist many situations in which both reactant clusters can
vive together after the annihilation. The classical exampl
that an animal species can coexist with its natural enemie
the natural world.

In order to study the general mechanisms, we introduc
‘‘monomer annihilation’’ model as an attempt to account f
the coexisting phenomena. In our model, irreversible agg
gations occur between any two clusters of the same spe
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Ai1Aj→Ai 1 j , Bi1Bj→Bi 1 j , ~1!

and a monomer annihilation between different species re

Ai1Bj→Ai 211Bj 21 . ~2!

The two-species case also contains the generic multispe
behavior. Therefore, we can first focus on the two-spec
case and then generalize it to the multispecies situation.
study our model in the mean-field limit. The mean-field a
proximation neglects the spatial fluctuation of the react
densities and, therefore, applies to the case in which the
tial dimensiond of the system is greater than or equal to
critical dimensiondc @6,9#. It was found that for pure aggre
gation processes,dc52 @11#. Sokolov and Blumen verified
that for irreversible aggregation processes with partial an
hilation the marginal dimension is 2@8#, and Ben-Naim and
Krapivsky also found that for irreversible aggregation syst
with complete annihilation the critical dimension isdc52
@9#. Since our model interpolates between the pure aggre
tion and the general aggregation-annihilation processes,
natural to expect that for our model the critical dimension
the same,dc52.

We first investigate the two-species aggregatio
annihilation process. The concentrations ofA andB clusters
consisting ofk mers are denoted byak andbk , respectively.
Here we consider a simple model with a constant reac
rate kernel. All the annihilation reaction rates are equal t
constantJ, and the aggregation rates ofA and B clusters
equal the constantsI 1 and I 2, respectively. The mean-field
theory assumes that the reaction proceeds with a rate pro
tional to the concentrations of the reactants. Then the me
field rate equations for this two-species system read

dak

dt
5I 1S 1

2 (
i 1 j 5k

aiaj2ak(
j 51

`

aj D 2J~ak2ak11!(
j 51

`

bj ,

dbk

dt
5I 2S 1

2 (
i 1 j 5k

bibj2bk(
j 51

`

bj D 2J~bk2bk11!(
j 51

`

aj .

~3!

We consider the simplest but important case with
monodisperse initial conditions

ak~0!5A0dk1 , bk~0!5B0dk1 . ~4!
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The governing rate equations~3! can then be solved with th
help of ansatz@6#

ak~ t !5A~ t !@a~ t !#k21, bk~ t !5B~ t !@b~ t !#k21. ~5!

Substituting Eqs.~5! into Eqs.~3!, we can transform the rat
equations~3! into the differential equations as follows:

da

dt
5

I 1

2
A,

dA

dt
52

I 1A2

12a
2JAB

12a

12b
,

db

dt
5

I 2

2
B;

dB

dt
52

I 2B2

12b
2JAB

12b

12a
. ~6!

Introducing two variables,a(t)5@12a(t)#21 and b(t)
5@12b(t)#21, we recast Eqs.~6! to

d2a

dt2
52

2J

I 2ab

da

dt

db

dt
,

d2b

dt2
52

2J

I 1ab

da

dt

db

dt
, ~7!

with the initial conditions

a5b51,
da

dt
5

1

2
I 1A0 ,

db

dt
5

1

2
I 2B0 at t50.

~8!

It is obvious that for our model the mass difference betwe
the two species is conserved,

MA~ t !2MB~ t !5 (
k51

`

k@ak~ t !2bk~ t !#

5
2

I 1

da

dt
2

2

I 2

db

dt
[A02B0 . ~9!

From Eq.~9!, one can obtain

I 2a2I 1b5
I 1I 2

2
~A02B0!t1I 22I 1 . ~10!

Under the symmetrical initial condition,A05B0, we find
I 2a2I 1b5I 22I 1. Equations~7! then reduce to

da

dt
5

I 1

2
A0S I 1

I 2
D 2J/(I 22I 1)S 12

I 22I 1

I 2
a21D 22J/(I 22I 1)

for I 1ÞI 2 ,

da

dt
5

I 1

2
A0expS 2J

I 1a
2

2J

I 1
D for I 15I 2 . ~11!

From Eqs.~11!, we cannot derive the exact solution ofa(t)
and then turn to determine its asymptotic solution at la
times. The system is assumed to reach its steady statet
→` and the corresponding steady conditions are given
follows:

da

dt
5

1

a2

da

dt
50,

dA

dt
5

2

I 1a2

d2a

dt2
2

4

I 1a3 S da

dt D
2

50.

~12!
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Thus, we can conclude that eithera→` or da/dt→0 at t
→`. Further, from Eqs.~11!, we know that for this casea
→` at t→`. Hence,a@1 at t@1. In the long-time limit,
Eqs.~11! can be asymptotically rewritten as

da

dt
.C1 , ~13!

where C15(I 1A0/2)(I 1 /I 2)2J/(I 22I 1) for I 1ÞI 2 and C1
5(I 1A0/2)exp(22J/I1) for I 15I 2. Equation~13! can be di-
rectly solved to yield the asymptotic solution ofa(t) at large
time,

a~ t !.C1t. ~14!

From Eqs. ~10! and ~14!, one can then determine th
asymptotic solution ofb(t) at large times

b~ t !.C2t, ~15!

where C25I 2C1 /I 1. Thus, we obtain the asymptotic solu
tions of the cluster-mass distributions

ak~ t !.
2

I 1C1
t22~12C1

21t21!k21,

bk~ t !.
2

I 2C2
t22~12C2

21t21!k21. ~16!

Further, Eqs.~16! can be rewritten as

ak~ t !.
2

I 1C1
t22exp~2x!, bk~ t !.

2

I 2C2
t22exp~2y!,

~17!

which are valid in the scaling regionk@1, t@1, x
5(k/C1)t215finite, and y5(k/C2)t215finite. These ex-
hibit that the cluster-mass distribution of either species
proaches a conventional scaling form@6#

ck~ t !.t22F@k/S~ t !#, S~ t !}t, ~18!

where ck(t) denotes the concentration of thek-mer aggre-
gates andS(t) is the characteristic mass for such an irreve
ible aggregation system. In this model, the scaling function
exponential,F(x)5exp(2x). Moreover, the typical mass
S(t) of either species grows ast. It is also instructive to
compute the total concentration and the total mass of
aggregates. In the long-time limit, we obtain the total co
centrations

NA~ t !5 (
k51

`

ak~ t !.
2

I 1
t21, NB~ t !5 (

k51

`

bk~ t !.
2

I 2
t21,

~19!

and the total mass densities

MA~ t !5MB~ t !5 (
k51

`

kak~ t !.
2C1

I 1
. ~20!
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These indicate that the total concentration of either spe
decays ast21 and the total mass of either species retain
certain value att@1. The results also imply that for th
symmetrical initial case, both species are conserved by
dynamics of this irreversible aggregation-annihilation p
cess, which is quite different from the results for the conv
tional aggregation-annihilation processes@6,7,9,10#.

For the asymmetrical initial case,A0.B0, it is difficult
for us to derive the explicit solutions of the cluster-ma
distributions. However, we can draw several important c
clusions on the basis of the results of the above-mentio
symmetrical initial case, which are confirmed by some n
merical computations. From Eq.~9!, we find that da/dt
5I 1(A02B0)/21(I 1 /I 2)db/dt>I 1(A02B0)/2. Mean-
while, sinceda/dt5C1 in the A05B0 case att→` @see
Eqs. ~13!#, we can conclude that for theA0.B0 case
da/dt.C1 at large times. Hence, ifC1>I 1(A02B0)/2, i.e.,
A0 /B0<@12exp(22J/I1)#

21 for I 15I 2 or A0 /B0<@1
2(I 1 /I 2)2J/(I 22I 1)#21 for I 1ÞI 2, we find thatdb/dt.C3
.0 and da/dt.I 1(A02B0)/21C3 in the long-time limit
~hereC3 is a finite constant!, which are similar to Eq.~13!.
Thus, we know that the cluster-mass distribution of eith
species approaches the conventional scaling form~18! and
both species can be conserved by the dynamics of the
tem. This result is confirmed by some numerical compu
tions. On the other hand, whenA0@B0 ~especially for the
case in which there exists only one monomer ofB species in
the beginning of the process!, B species will be annihilated
completely byA species and onlyA clusters survive finally.
Thus, we know that for theA0@B0 case, the mass distribu
tion of A clusters also satisfies the conventional scaling fo
~18!, while the conventional scaling description breaks do
for B clusters.

It is obvious that for the asymmetrical initial case, the
exists a critical ratiogc of A0 /B0 which divides the two
different evolution regimes. WhenA0 /B0,gc , both species
scale according to the conventional scaling form~18! and
survive together at the end; however, for theA0 /B0.gc
case, onlyA clusters can survive finally. Our results imp
that gc.@12exp(22J/I1)#

21 for the I 15I 2 case andgc
.@12(I 1 /I 2)2J/(I 22I 1)#21 for the I 1ÞI 2 case. Unfortu-
nately, we cannot determine the exact value ofgc . If the
details of the reaction events are given, the critical ratiogc
may be asymptotically determined by numerical compu
tion.

In the n-species (n.2) case, we set all the aggregatio
rates equal toI and the annihilation ratesJ. Under the sym-
metrical monodisperse initial conditions, the governing r
equation reads

dck

dt
5I S 1

2 (
i 1 j 5k

cicj2ck(
j 51

`

cj D
2~n21!J~ck2ck11!(

j 51

`

cj , ~21!

whereck(t) denotes the concentration of thek-mer clusters
of any species andck(0)5dk1. By employing the above-
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mentioned technique, we solve Eq.~21! and obtain the
asymptotic scaling solution ofck(t) as follows:

ck~ t !.
2

IC4
t22exp~2x!, x5~k/C4!t21, ~22!

whereC45(I /2)exp@22(n21)J/I#. This implies that for the
symmetrical initial case, the evolution of each species ob
the conventional scaling law~18!. Moreover, all species can
be conserved by the dynamics of the aggregation proc
with monomer annihilation, which is independent of the sp
cies numbern as well as the ratio between the reaction ra
J and I. On the other hand, the final surplus mass of ea
species is equal to a finite constant exp@22(n21)J/I# that
depends on the species numbern and on the ratio of reaction
rates.

In order to go deep into the kinetics of the irreversib
aggregation with monomer annihilation, we then turn to d
cuss a two-species model with a fast annihilation rate ker
In this system, the rate of the annihilation betweenAk andBj
clusters is proportional to their massesk and j, with the pro-
portionality coefficientJ. Then the rate equations read

dak

dt
5I 1S 1

2 (
i 1 j 5k

aiaj2ak(
j 51

`

aj D
2J@kak2~k11!ak11#(

j 51

`

jb j ,

dbk

dt
5I 2S 1

2 (
i 1 j 5k

bibj2bk(
j 51

`

bj D
2J@kbk2~k11!bk11#(

j 51

`

ja j . ~23!

Under the initial conditions~4!, with the help of ansatz~5!
we recast Eqs.~23! to

da

dt
5

I 1

2
A1

Ja2B

~12b!2
2

JaB

~12b!2
,

dA

dt
52

I 1A2

12a
1

2JaAB

~12b!2
2

JAB

~12b!2
,

db

dt
5

I 2

2
B1

Jb2A

~12a!2
2

JbA

~12a!2
,

dB

dt
52

I 2B2

12b
1

2JbAB

~12a!2
2

JAB

~12a!2
. ~24!

It should be pointed out that for this model the mass d
ference between the two species is also conserved. Fo
symmetrical initial case,A05B05C0, we have MA(t)
[MB(t), i.e.,A/(12a)2[B/(12b)2. Thus, from Eqs.~24!
we obtain
1-3
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d@A/~12a!2#

dt
5

d@B/~12b!2#

dt
52J

A2

~12a!4
. ~25!

Equation~25! can be directly solved to yield

A

~12a!2
5

B

~12b!2
5

C0

JC0t11
. ~26!

By making use of Eq.~26! we solve Eqs.~24! and then
obtain the asymptotic solutions ofak(t) and bk(t) at large
times,

ak~ t !.C5S I 1

I 112JD k

t21exp~2x!, x5C6kt21,

bk~ t !.C7S I 2

I 212JD k

t21exp~2y!, y5C8kt21, ~27!

where C554J/(I 112J)2, C652/@(I 112J)C0#, C7
54J/(I 212J)2, and C852/@(I 212J)C0#. The results
show that the cluster-mass distribution of either species d
not approach the conventional definition~18! but satisfies a
modified scaling form ck(t).hkt21F@k/S(t)#, S(t)}t.
Here, h is a constant and 0,h,1. This modified scaling
form also indicates that the two different mass scales
growing scale and a time-independent scale, are assoc
with either species. The growing scale for either specie
the same,S(t);t, which is forced by the aggregation
annihilation process. The time-independent scale forA spe-
cies isSA.(I 112J)/2J while that forB species isSB.(I 2
12J)/2J. It is the time-independent scale that dominates
evolution behavior of the species in the long-time limit. Be
Naim and Krapivsky also found that this nonuniversal ph
nomenon exists in the irreversible aggregation-annihilat
processes@6,9#. In the long-time limit, the total concentratio
and the total mass ofA species areNA(t).2t21/(I 112J)
and MA(t).t21/J, and those ofB species areNB(t)
.2t21/(I 212J) and MB(t).t21/J. These indicate tha
both the total concentration and the total mass of either s
cies decay ast21 in the long-time limit. So, both specie
annihilate each other completely at the end.
o
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Finally, we turn to the asymmetrical initial case,A0
.B0. From Eqs.~24!, we obtain

d@A/~12a!2#

dt
5

d@B/~12b!2#

dt
52J

AB

~12a!2~12b!2
.

~28!

Since A/(12a)22B/(12b)2[A02B0, it is obvious that
MA(t)→A02B0 andMB(t)→0 at t→`. Thus, one can eas
ily solve Eqs.~24! to obtain the asymptotic solutions

ak~ t !.C9t22exp~2x!, x5C10kt21,

bk~ t !.C11exp@2J~A02B0!kt#, ~29!

whereC954/@ I 1
2(A02B0)#, C1052/@ I 1(A02B0)#, andC11

5(A02B0)B0 /A0. The results show that the evolution b
havior of A clusters satisfies the conventional scaling la
~18! while B clusters do not scale. For this case, the to
concentration ofA clusters decays ast21 in the long-time
limit while that of B clusters decays rapidly as exp@2J(A0
2B0)t#. Moreover, onlyA clusters can survive at the end.

In summary, we have proposed a simple irreversible
gregation model with monomer annihilation. Based on
mean-field assumption, we analyzed the kinetics of the i
versible aggregation-annihilation process with a consta
rate kernel. The results indicate that for the symmetrical
tial case, the cluster-mass distribution of each spec
satisfies the conventional scaling form and all species ca
conserved by the dynamics of the aggregation-annihila
system. However, for the two-species case in which the
tial mass of one species is by far greater than that of ano
one, only the species with the larger initial concentrati
scales according to the conventional scaling law and surv
at the end. We have also investigated the two-species m
with a fast annihilation rate kernel and found that its kine
behavior is quite different from that of the constant-ra
kernel model. Under the symmetrical initial conditions, t
evolution behavior of either species obeys the modified s
ing law and both species annihilate each other completel
the end. For the asymmetrical initial case, the evolution
the heavy species with the larger initial concentration
proaches the conventional scaling form while the light s
cies does not scale. Hence, only the heavy species can
vive finally.
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